Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model

نویسندگان

  • Yekaterina Epshteyn
  • Ahmet Izmirlioglu
چکیده

This paper formulates and analyzes fully discrete schemes for the two-dimensional Keller-Segel chemotaxis model. The spatial discretization of the model is based on the discontinuous Galerkin methods and the temporal discretization is based either on Forward Euler or the second order explicit total variation diminishing (TVD) Runge-Kutta methods. We consider Cartesian grids and prove optimal fully discrete error estimates for the proposed methods. Our proof is valid for pre-blow-up times since we assume boundedness of the exact solution. AMS subject classification: 65M60, 65M12, 65M15, 92C17, 35K57

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model

In this paper, we apply the local discontinuous Galerkin (LDG) method to 2D Keller– Segel (KS) chemotaxis model. We improve the results upon (Y. Epshteyn and A. Kurganov, SIAM Journal on Numerical Analysis, 47 (2008), 368-408) and give optimal rate of convergence under special finite element spaces. Moreover, to construct physically relevant numerical approximations, we develop a positivity-pre...

متن کامل

Error Analysis of a Conservative Finite-element Approximation for the Keller-segel System of Chemotaxis

We are concerned with the finite-element approximation for the Keller-Segel system that describes the aggregation of slime molds resulting from their chemotactic features. The scheme makes use of a semi-implicit time discretization with a time-increment control and Baba-Tabata’s conservative upwind finite-element approximation in order to realize the positivity and mass conservation properties....

متن کامل

New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model

We develop a family of new interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. This model is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. It has been recently shown that the convective part of this system is of a mixed hyperbol...

متن کامل

Nonnegativity of exact and numerical solutions of some chemotactic models

We investigate nonnegativity of exact and numerical solutions to a generalized Keller– Segel model. This model includes the so-called ‘‘minimal’’ Keller–Segel model, but can cover more general chemistry. We use maximum principles and invariant sets to prove that all components of the solution of the generalized model are nonnegative. We then derive numerical methods, using finite element techni...

متن کامل

Model Hierarchies for Cell Aggregation by Chemotaxis

We present PDE (partial differential equation) model hierarchies for the chemotactically driven motion of biological cells. Starting from stochastic differential models we derive a kinetic formulation of cell motion coupled to diffusion equations for the chemoattractants. Also we derive a fluid dynamic (macroscopic) Keller-Segel type chemotaxis model by scaling limit procedures. We review rigor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2009